home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
InfoMagic Standards 1994 January
/
InfoMagic Standards - January 1994.iso
/
ccitt
/
1988
/
troff
/
5_1_08.tro
< prev
next >
Wrap
Text File
|
1991-12-13
|
83KB
|
3,315 lines
.rs
.\" Troff code generated by TPS Convert from ITU Original Files
.\" Not Copyright ( c) 1991
.\"
.\" Assumes tbl, eqn, MS macros, and lots of luck.
.TA 1c 2c 3c 4c 5c 6c 7c 8c
.ds CH
.ds CF
.EQ
delim @@
.EN
.nr LL 40.5P
.nr ll 40.5P
.nr HM 3P
.nr FM 6P
.nr PO 4P
.nr PD 9p
.po 4P
.rs
\v | 5i'
.LP
\(sc 3 Suppl\*'ement n\uo\d 3 au d\*'ebut de cette page
.sp 2P
.LP
\v'20P'
\fB4\fR \fBOverall Performance Index model for Network Evaluation
(OPINE)\fR (contribution by NTT)
.sp 1P
.RT
.sp 1P
.LP
4.1
\fIIntroduction\fR
.EF '% Volume\ V\ \(em\ Suppl.\ No.\ 3''
.OF '''Volume\ V\ \(em\ Suppl.\ No.\ 3 %'
.sp 9p
.RT
.PP
NTT has been studying an objective model for evaluating telephone transmission
performance [39], [40], [41], [42]. This describes OPINE (Overall Performance
Index model for Network Evaluation), focussing on practical use.
.PP
OPINE deals with transmission loss, circuit noise, room noise,
attenuation/frequency distortion (fundamental factors), quantizing distortion,
talker echo and sidetone. It models the auditory\(hypsychological process
of
evaluation by human beings of telephone transmission performance based
on these factors. It is therefore the second type of model according to
the
classification of \(sc\ 2 (British Telecom). The model's basic principle is the
fact that evaluation of psychological factors (not physical factors) on the
psychological scale is additive. The model is extended from the first revision
to take additional physical factors into account.
.PP
OPINE was first constructed for fundamental factors in 1983\ [39]. The
opinion test data used for coefficient training and verification largely
depend on the results of the experiment conducted at NTT ECL, Musashino
in 1975. Its main purpose was to study the opinion score as a speech quality
measure and a basis of telephone transmission standard. [40] and [43] describe
the raw data. The experiment was of large scale with various factors taken
into account,
using an NTT 600\(hytype telephone set.
.PP
In 1985, opinion tests were conducted for quantizing distortion. A
newer revision of the model that also dealt with quantizing distortion was
formulated and verified\ [41].
.PP
Some further opinion tests for talker echo and sidetone were conducted
in parallel\ [44], [45]. A study of the evaluation characteristics of talker
echo and its interaction with loudness was undertaken later.
.PP
In 1986 revision 2.0 of OPINE was formulated\ [43] in which all the
parameters were rewritten in terms of loudness rating (LR). This revision
was improved and updated to\ 2.1. Improved points in revision\ 2.1 are
these minor
changes:
.RT
.LP
\(em
\(*D\fIf\fR has been corrected to agree with that of
Recommendation\ P.79,
.LP
\(em
a trivial bug of the Fortran program in revision\ 2.0 has been eliminated.
.bp
.PP
While the model configuration was studied, the psychological
characteristics of opinion evaluation were also investigated\ [46], using
transmission loss and circuit noise as variables. The main conclusions
were:
.LP
\(em
the opinion score has good reproducibility if experimental
design, subject type and other conditions are kept constant,
.LP
\(em
the test condition range greatly affects the opinion score. The loss
condition range especially affects the absolute opinion score.
.PP
In spite of the above conclusions, an absolute evaluation for a
given network condition needs to be defined for practical use.
.PP
Therefore, we specify two classes of opinion tests:
.RT
.LP
\(em
Class 1, in which the score reflects the mean value of
network evaluation for general telephone customers;
.LP
\(em
Class 2, which produces a relative score but is sensitive to a few given
physical factors.
.PP
In the class 1 test, the purpose is to obtain an absolute opinion score.
Therefore the range of test conditions should be similar to that for
degradation in the present commercial network. The more factors taken into
account in the opinion test, the closer the score comes to an absolute
value. The number of subjects should exceed\ 60. The class\ 2 test, on
the other hand, is used to study interaction among several factors. It
is more practical but
the score obtained is not absolute. For this test, it is desirable that the
subject's occupation be connected with the subject of speech quality.
.PP
In formulating OPINE, we classified the opinion database in 1975 as
the first class, and the rest as the second.
.PP
Opinion data executed after 1983 were mainly used for qualitative
verification of the additive characteristics of evaluation on a psychological
scale for different factors.
.PP
In extensions of OPINE, coefficients for newer factors were changed so
that they fitted the results of the absolute score of the class\ 1 test
of
1975.
.RT
.sp 1P
.LP
4.2
\fIOutline of the model\fR
.sp 9p
.RT
.PP
Five psychological factors affecting telephone speech quality were chosen
on the basis of previous studies:
.RT
.LP
1)
speech distortion for attenuation/frequency distortion,
.LP
2)
effective loudness loss or excess in speech,
.LP
3)
noisiness during speech intervals and non\(hyspeech intervals,
.LP
4)
degradation caused by talker echo,
.LP
5)
degradation caused by sidetone.
.PP
A PI (Performance Index) is also introduced for each of the
above factors which indicates the psychological degradation degree. The
MOS is estimated from the Overall Performance Index (OPI) which is obtained
by
summing up all PIs.
.PP
To calculate the PI for each factor, physical factors are obtained for
loudness, distortion,\ etc., and each PI is transformed by an appropriate
function. These functions are determined heuristically and the necessary
constants are estimated from subjective data. The degree to which each factor
.PP
influences the evaluation is reflected by these constants. The conceptual
block diagram of OPINE is shown in Figure\ 4\(hy1. The model consists of
four parts:\ 1) an overall electro\(hyacoustic calculation,\ 2) hearing
parameter derivation,\ 3) a performance index derivation and\ 4) an evaluation
derivation. The numbers in
the figure refer to the equation numbers listed in \(sc\ 4.3.
.RT
.sp 1P
.LP
4.3
\fIConfiguration of OPINE\fR
.sp 9p
.RT
.PP
All the symbols are classified into 5 types:
.RT
.LP
Type\ [A]:
model parameters
.LP
Type\ [A\(hy1]:
constants or coefficients adopted from standards
.LP
Type\ [A\(hy2]:
constants or coefficients that OPINE accepted from results of other studies
.LP
Type\ [A\(hy3]:
estimated coefficients from the results of NTT's subjective tests
.LP
Type\ [B]:
input variables of the section being described
.LP
Type\ [C]:
OPINE's intermediate outputs of the section being
described.
.bp
.LP
.rs
.sp 47P
.ad r
\fBFigure 4\(hy1, p.1\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.PP
Input variables to the model and the values of model parameters
are listed in \(sc\ 4.4. In the following equations, \fIC\fR\d\fIj\fR\u(
\fIj\fR =1,13)
denote
constants ([A\(hy3]\(hytype). The suffix \fIi\fR denotes the 1/3 octave
frequency band
number. Relations among variables corresponding to each section are shown in
Figures\ 4\(hy3 through\ 4\(hy10. The definition of the graphic symbols
used in these figures is shown in Figure\ 4\(hy2.
.sp 1P
.LP
4.3.1
\fIOverall electro\(hyacoustic calculation\fR
.sp 9p
.RT
.sp 1P
.LP
4.3.1.1
\fIOpinion equivalent white noise level of quantizing distortion\fR
.sp 9p
.RT
.PP
The model expresses CODEC's subective evaluation as an opinion
equivalent speech\(hyto\(hyspeech correlated noise (\fIQ\fR\d\fIo\fR\\d\fIp\fR\u).
Then the equivalent white noise level is acquired using the subjective
opinion test results for
MNR. If \fIA\fR\d\fIo\fR\\d\fIp\fR\uof a certain CODEC or its tandem connection
is known, it is possible to use the value as input. The various CODECs
and \fIQ\fR\d\fIo\fR\\d\fIp\fR\uadopted here are listed in Table\ 4\(hy1.
\v'6p'
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ce
\fBH.T. [T11.3]\fR
.ce
TABLE\ 4\(hy1
.ce
\fBValues of Q\fR\(da\fBo\fR\(da\fBp for PCM and ADPCM\fR\(da\fBv\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
cw(72p) | cw(48p) .
Transmission system \fIQ\fI
_
.T&
lw(72p) | cw(48p) .
PCM \(*m\(hy255, 8 bit 36.0
.T&
lw(72p) | cw(48p) .
\fBMIC \(*m\(hy255,\fR 7 32.8
.T&
lw(72p) | cw(48p) .
\fBMIC \(*m\(hy255,\fR 6 27.7
.T&
lw(72p) | cw(48p) .
\fBMIC \(*m\(hy255,\fR 5 22.5
.T&
lw(72p) | cw(48p) .
\fBMIC \(*m\(hy255,\fR 4 16.7
.T&
lw(72p) | cw(48p) .
ADPCM v 29.2
_
.TE
.nr PS 9
.RT
.ad r
\fBTable 4\(hy1 [T11.3], p.\fR
.sp 1P
.RT
.ad b
.RT
.LP
where
.LP
(+)
is the power summation operation
.sp 1P
.LP
Type [B] symbols
.sp 9p
.RT
.LP
\fIQ\fR\d\fIo\fR\\d\fIp\fR\u is the opinion equivalent speech\(hyto\(hyspeech
correlated noise ration\ (dB)
.LP
\fIV\fR\d\fIC\fR\u is the circuit noise level at the input to the
receiving local telephone circuit\ (dBmp)
.LP
\fIOLR\fR is the overall loudness rating of the telephone system being
considered\ (dB)
.LP
\fIRLR\fR is the receive loudness rating of the telephone system being
considered\ \ (dB)
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\fIV\fR\d\fIW\fR\\d\fIo\fR\\d\fIp\fR\u is the opinion (PI) equivalent
white noise
level at the input to the receiving local telephone circuit.\ \ (dBmp)
.LP
\fIPI\fI\d\fIQ\fR\u is the PI for quantizing distortion.
.LP
\fIV\fR\d\fIC\fR\\d\fIQ\fR\u is the equivalent circuit noise level when both
circuit noise and quantizing distortion are present.\ \ (dBmp)
.PP
\fINote\fR \ \(em\ When the digital system is not considered in a test
condition, equations (4\(hy1) and (4\(hy2) are not necessary, and \fIV\fR\d\fIW\fR\\d\fIo\fR\\d\fIp\fR\uis
set to an arbitrary low level, such as \(em100, in equation\ (4\(hy3).
.bp
.sp 1P
.LP
4.3.1.2
\fISpeech level and total noise level at an ERP\fR (see also
Annex\ C)
\v'6p'
.sp 9p
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.LP
Where:
.LP
(+)
power summation operation
.sp 1P
.LP
Type [A\(hy1] Symbols
.sp 9p
.RT
.LP
\fIB\fR\d\fIS\fR\\d\fIi\fR\u is the spectrum density of speech referred
to an MRP\ \ (dB rel 20 \(*mPa/Hz)
.LP
\(*D\fIf\fR\fI\d\fIi\fR\u is the width of ISO preferred 1/3 octave frequency
band\ \ (Hz)
.sp 1P
.LP
Type [A\(hy2] Symbols
.sp 9p
.RT
.LP
\fIB\fR\d\fIP\fR\\d\fIi\fR\u is the peak spectrum level of speech referred
to an MRP\ \ (dB rel 20 \(*mpa/Hz)
.LP
\fIX\fR\d\fIi\fR\u is the hearing threshold for the continuous sound
referred to an ERP\ \ (dB rel 20 \(*mPa/Hz)
.LP
\fIB\fR\d0\u\fI\fI\d\fIi\fR\u is the pure tone audibility threshold\
\ (dB rel 20 \(*mPa/Hz)
.LP
\fIK\fR\d\fIi\fR\u is the critical bandwidth\ \ (dB)
.LP
\fIL\fR\d\fIR\fR\\d\fIN\fR\\d\fIE\fR\\d\fIi\fR\u is the leakage transmission
loss at a
listener's ERP\ \ (dB)
.sp 1P
.LP
Type [B] symbols
.sp 9p
.RT
.LP
\fIL\fR\d\fIM\fR\\d\fIE\fR\\d\fIi\fR\u is the overall mouth\(hyto\(hyear
loss\ \ (dB)
.LP
\fIS\fR\d\fIJ\fR\\d\fIE\fR\\d\fIi\fR\u is the receiving sensitivity of a local
telephone circuit from the electrical input to an
ERP\ \ (dB rel Pa/V)
.LP
\fIB\fR\d\fIR\fR\\d\fIN\fR\\d\fIi\fR\u is the room noise spectrum density\
\ (dB rel 20 \(*mPa/Hz).
.LP
A\(hyweighted evaluation of \fIB\fR\d\fIR\fR\\d\fIN\fR\\d\fIi\fR\ubecomes
\fIR\fR\d\fIN\fR\u\ \ (dBA)
.LP
\fIL\fR\d\fIR\fR\\d\fIN\fR\\d\fIS\fR\\d\fIT\fR\\d\fIi\fR\u is the sidetone
transmission loss from an MRP to an ERP\ \ (dB)
.LP
\fIV\fR\d\fIC\fR\\d\fIQ\fR\\d\fIi\fR\u is the equivalent circuit noise
level when
both circuit noise and quantizing distortion are present\ \ (dBV/Hz)
.LP
Psophometric weighted evaluation of
\fIV\fR\d\fIC\fR\\d\fIQ\fR\\d\fIi\fR\ubecomes \fIV\fR\d\fIC\fR\\d\fIQ\fR\u
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\fIS\fR\d\fIi\fR\u is the band spectrum level of speech at an ERP\ \ (dB
rel 20 \(*mPa/Hz)
.LP
\fIS\fR\d\fIP\fR\\d\fIi\fR\u is the peak spectrum level of speech referred
to an ERP\ \ (dB rel 20 \(*mPa/Hz)
.LP
\fIN\fR\d\fIi\fR\u is the total band noise level at an ERP\ \ (dB rel 20
\(*mPa)
.bp
.LP
\fIN\fR\d\fIC\fR\\d\fIQ\fR\\d\fIi\fR\u is the noise level caused by stationary
circuit noise and quantizing distortion at an ERP
(dB rel 20 \(*mPa/Hz)
.LP
\fIN`\fI\d\fIC\fR\\d\fIQ\fR\\d\fIi\fR\u is the band level of \fIN\fR\d\fIC\fR\\d\fIQ\fR\\d\fIi\fR\u\
\ (dB rel 20 \(*mPa)
.LP
\fIN\fR\d\fIR\fR\\d\fIN\fR\\d\fIS\fR\\d\fIT\fR\\d\fIi\fR\u is the noise
sidetone level caused by room noise at an ERP\ \ (dB rel 20 \(*mPa/Hz)
.LP
\fIN\fR\d\fIR\fR\\d\fIN\fR\\d\fIE\fR\\d\fIi\fR\u is the room roise level
via earcap
leakage\ \ (dB rel 20 \(*mPa/Hz).
.sp 1P
.LP
4.3.2
\fIDerivation of hearing parameters and performance index (PI)\fR
.sp 9p
.RT
.sp 1P
.LP
4.3.2.1
\fIPI\fI\d\fIE\fR\u\v'6p'
.sp 9p
.RT
.EF '% \fIL\fI\ (PI\ for\ effective\ loudness\ loss\ or\ excess)''
.OF '''\fIL\fI\ (PI\ for\ effective\ loudness\ loss\ or\ excess) %'
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.LP
where:
.LP
max
is a suffix which denotes maximum value within the passing bands
.sp 1P
.LP
Type [A\(hy1] symbols
.sp 9p
.RT
.LP
\fIG\fR\d\fIi\fR\u is the ratio of loudness for frequency band \fIi\fR
in a lossless system to total loudness (loudness function)
.LP
\(*D\fIf\fR\fI\d\fIi\fR\u is the width of the \fIi\fR th frequency band\ \ (Hz)
.LP
\fIm\fR is the ear's exponential coefficient (= 0.175)
.LP
\fIM\fR is the number of partitioned bands (= 19)
.sp 1P
.LP
Type [A\(hy3] symbols
.sp 9p
.RT
.LP
\(*l\d0\u is the optimum loudness at ERP
.LP
\fIC\fR is a constant. Value of \fIC\fR is not needed since \fIC\fR is
cancelled in equation (4\(hy15)
.sp 1P
.LP
Type [B] symbols
.sp 9p
.RT
.LP
\fIL\fR\d\fIM\fR\\d\fIE\fR\\d\fIi\fR\u is the transmission loss\(hyfrequency
characteristic from MRP to ERP\ \ (dB)
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\fIPI\fI\d\fIE\fR\\d\fIL\fR\u PI on loundess in both the absence and
presence of noise
.LP
\(*l\fI\fI\d\fIE\fR\u is the effective loudness at ERP taking the effect
of noise into account
.LP
\fIb\fR\d\fIn\fR\u is the equivalent loudness loss in the presence of
noise\ \ (dB)
.LP
\fIe\fR\d\fIn\fR\u is the maximum sensation peak level of speech\ \ (dB).
.bp
.sp 1P
.LP
4.3.2.2
\fIExpression of PI\fI\d\fIE\fR\u
.sp 9p
.RT
.EF '% \fIL\ in\ terms\ of\ loudness\ rating\ (LR)''
.OF '''\fIL\ in\ terms\ of\ loudness\ rating\ (LR) %'
.PP
Equation (4\(hy15) is theoretically expressed in terms of LR. The
derivation of equation (4\(hy16) from equation (4\(hy15) is shown in
Annex\ E.
\v'6p'
.RT
.ad r
.ad b
.RT
.LP
where:
.sp 1P
.LP
Type [A\(hy3] symbol
.sp 9p
.RT
.LP
\fIOLR\fR\d0\u is the overall loudness rating value at which the
telephone system supplies the optimum loudness\ \ (dB)
.sp 1P
.LP
Type [B] symbol
.sp 9p
.RT
.LP
\fIOLR\fR overall loudness rating of the telephone system being
considered\ \ (dB).
.sp 1P
.LP
4.3.2.3
\fIPI\fI
\v'6p'
.sp 9p
.RT
.EF '% \fIN\ (PI\ for\ noisiness)''
.OF '''\fIN\ (PI\ for\ noisiness) %'
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.LP
where:
.sp 1P
.LP
Type [A\(hy1] symbol
.sp 9p
.RT
.LP
\fIA\fR\d\fIi\fR\u is the weight for A\(hycharacteristic at frequency
band \fIi\fR \ \ (dB)
.sp 1P
.LP
Type [A\(hy3] symbols
.sp 9p
.RT
.LP
\fIN\fR\d\fIt\fR\\d\fIh\fR\u is the noise threshold\ \ (dB rel 20 \(*mPa)
.LP
\fIn\fR is the exponent
.sp 1P
.LP
Type [B] symbol
.sp 9p
.RT
.LP
\fIN`\fI\fI\d\fIC\fR\\d\fIQ\fR\\d\fIi\fR\u (see \(sc\ 4.3.1.2)
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\fIPI\fI\d\fII\fR\\d\fIN\fR\u is the PI for idle circuit (non\(hyspeech
interval) noisiness.
.LP
\fIN\fR `
\fI\fI\d\fIi\fR\u is the level above the noise
threshold\ \ (dB).
\v'6p'
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.sp 1P
.LP
Type [A\(hy3] symbol
.sp 9p
.RT
.LP
\fISNR\fI\d\fIt\fR\\d\fIh\fR\u is the threshold below which the signal\(hyto\(hynoise
ratio has no effect on the evaluation\ \ (dB)
.bp
.sp 1P
.LP
Type [B] symbols
.sp 9p
.RT
.LP
\fIS\fR\d\fIi\fR\u (see \(sc\ 4.3.1.2)
.LP
\fIN\fR\d\fIi\fR\u (see \(sc\ 4.3.1.2)
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\fIPI\fI\d\fIS\fR\\d\fIN\fR\u is the \fIPI\fR for speech interval noisiness.
.LP
\fISNR\fR is the Signal\(hyto\(hynoise ratio at an ERP\ \ (dB).
.sp 1P
.LP
4.3.2.4
\fIPI\fI\d\fIA\fR\u\v'6p'
.sp 9p
.RT
.EF '% \fID\ (PI\ for\ attenuation/frequency\ distortion)''
.OF '''\fID\ (PI\ for\ attenuation/frequency\ distortion) %'
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.LP
where:
.LP
\fIg\fR\d\fIi\fR\u is the conversion function from the speech power
spectrum into a loudness level by equal\(hyloudness curve (from\ [48])
.LP
\fIx\fR\d\fIi\fR\u is the arbitrary band speech level\ \ (dB rel 20 \(*mPa)
.sp 1P
.LP
Type [A\(hy1] symbols
.sp 9p
.RT
.LP
\fIM\fR is the number of partitioned bands (= 19)
.LP
\fIa\fR\d\fIi\fR\u are the parameters for converting to
loudness level (in phones); they are a function of frequency
.EF '% \fIi''
.OF '''\fIi %'
.EF '% \fIi''
.OF '''\fIi %'
.sp 1P
.LP
Type [A\(hy2] symbol
.sp 9p
.RT
.LP
\fIM\fR\d\fIs\fR\u is the band number in which 1\ kHz is contained (= 11)
.sp 1P
.LP
Type [A3] symbol
.sp 9p
.RT
.LP
\fIL\fR\d\fIt\fR\\d\fIh\fR\u is the loudness threshold\ \ (phon)
.LP
\(*L\fI\fI\d\fIt\fR\\d\fIh\fR\u is the threshold of \(*L\fIi\fR \ \ (phon)
.bp
.sp 1P
.LP
Type [B] symbol
.sp 9p
.RT
.LP
\fId\fR\d\fIi\fR\u is the relative loss caused by attenuation/frequency
distortion between junctions\ \ (dB)
.LP
It is 0\ dB at 800\ Hz. \fIS\fR \ +\ \fId\fR represents hypothetical band
speech level at an ERP without attenuation/frequency distortion (reference
speech)
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\(*L\fI\fI\d\fIi\fR\u is the difference between reference speech and
distorted speech\ \ (phon)
.LP
\(*L\fI\fI\d\fIl\fR\u is the loudness level converted from reference
speech\ \ (phon)
.LP
\(*L\fI\fI\d\fId\fR\u is the loudnes level converted from speech with
both loss and band limitation\ \ (phon)
.LP
\fID\fR\d\fIu\fR\u is the distance between \(*L\fI\fI\d\fIl\fR\uand \(*L\fI\fI\d\fId\fR\uabove
1\ kHz
.LP
\fID\fR\d\fIl\fR\u is the distance between \(*L\fI\fI\d\fIl\fR\uand \(*L\fI\fI\d\fId\fR\ubelow
1\ kHz
.LP
\fIPI\fI\d\fIA\fR\\d\fID\fR\u is the PI for attenuation/frequency distortion.
.sp 1P
.LP
4.3.2.5
\fIPI\fI\d\fIE\fR\u\v'6p'
.sp 9p
.RT
.EF '% \fIC\ (PI\ for\ talker\ echo)''
.OF '''\fIC\ (PI\ for\ talker\ echo) %'
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.LP
where:
.sp 1P
.LP
Type [B] symbols
.sp 9p
.RT
.LP
\fIE\fR is the talker echo LR\ \ (dB)
.LP
\fID\fR is the delay time of talker echo\ \ (msec)
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\fIPI\fI\d\fIE\fR\\d\fIC\fR\u is the performance index on talker echo
.LP
\fIE\fR\d0\u is the critical talker echo LR\ \ (dB).
.sp 1P
.LP
4.3.2.6
\fIPI\fI\d\fIS\fR\u\v'6p'
.sp 9p
.RT
.EF '% \fIT\ (PI\ for\ sidetone)''
.OF '''\fIT\ (PI\ for\ sidetone) %'
.ad r
.ad b
.RT
.LP
where:
.sp 1P
.LP
Type [A\(hy3] symbol
.sp 9p
.RT
.LP
\fISt\fR\d0\u is the critical STMR\ \ (dB)
.sp 1P
.LP
Type [B] symbol
.sp 9p
.RT
.LP
\fISt\fR is the STMR (sidetone masking rating)\ \ (dB)
.sp 1P
.LP
Type [C] symbol
.sp 9p
.RT
.LP
\fIPI\fI\d\fIS\fR\\d\fIT\fR\u is the performance index on sidetone.
.bp
.sp 1P
.LP
4.3.3
\fIEvaluation derivation\fR (see also Annex D)
\v'6p'
.sp 9p
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.LP
where:
.sp 1P
.LP
Type [A\(hy3] symbol
.sp 9p
.RT
.LP
\fIP\fR\d0\u is \fIP\fR with no degradation.
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\fIOPI\fR is the overall performance index
.LP
\fIP\fR is the mean overall evaluation on this psychological
scale
\v'6p'
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.LP
where:
.sp 1P
.LP
Type [A\(hy3] symbol
.sp 9p
.RT
.LP
\(*s
is the standard deviation of normal distribution of \fIP\fR and \fIOPI\fR
.sp 1P
.LP
Type [C] symbols
.sp 9p
.RT
.LP
\fIMOS\fR is the mean opinion score ranging from 0 to 4
.LP
\fIp\fR\d\fIk\fR\u is the ratio of evaluation category \fIk\fR to all the
categories.
.PP
Equation (4\(hy35) is calculated using the standard normal
distribution table. The derivation of this equation from equation (4\(hy34) is
shown in Annex\ F.
.PP
Equations (4\(hy34) and (4\(hy35) are the adaptation of the model
in\ [49].
.RT
.sp 1P
.LP
4.4
\fISymbol types and values\fR
.sp 9p
.RT
.PP
Input variables to the model are listed in Table\ 4\(hy2. \fIL\fR\d\fIM\fR\\d\fIE\fR\uand
\fISTMR\fR can be calculated in advance using the method described in
Recommendation\ P.79.
.PP
Values of \fIa\fR\d\fIi\fR\u,\fIb\fR\d\fIi\fR\uand \fIc\fR\d\fIi\fR\u([A\(hy1]\(hytype)
are shown in
Table\ 4\(hy3. Values of other model parameters ([A\(hy1]\(hy and [A\(hy2]\(hytype
parameters) are shown in Table\ 4\(hy4. Values of estimated constants or
coefficients from the subjective test results ([A\(hy3]\(hytype parameters)
are shown in Table\ 4\(hy5.
.bp
.RT
.ce
\fBH.T. [T12.3]\fR
.ce
TABLE\ 4\(hy2
.ce
\fBInput variables to the model\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
cw(60p) | cw(120p) .
Symbols Definition
_
.T&
lw(60p) | lw(120p) .
\fIV\fI See \(sc 4.3.1.1
.T&
lw(60p) | lw(120p) .
\fIQ\fI See \(sc 4.3.1.1
.T&
lw(60p) | lw(120p) .
\fIOLR\fR {
See \(sc\(sc 4.3.1.1, 4.3.2.2
}
.T&
lw(60p) | lw(120p) .
\fIRLR\fR See \(sc 4.3.1.1
.T&
lw(60p) | lw(120p) .
\fIS \dMJi \u\fR {
Mouth to junction loss (dB rel V/Pa)
}
.T&
lw(60p) | lw(120p) .
\fIS \dJEi \u\fR See \(sc 4.3.1.2
.T&
lw(60p) | lw(120p) .
\fIL\fR {
Junction to junction loss at 800 Hz (dB)
}
.T&
lw(60p) | lw(120p) .
\fId\fI See \(sc 4.3.2.4
.T&
lw(60p) | lw(120p) .
\fIL \dMEi \u\fR See \(sc 4.3.1.2
.T&
lw(60p) | lw(120p) .
\fIR\fI See \(sc 4.3.1.2
.T&
lw(60p) | lw(120p) .
\fIL \dRNSTi \u\fR See \(sc 4.3.1.2
.T&
lw(60p) | lw(120p) .
\fIE\fR See \(sc 4.3.2.5
.T&
lw(60p) | lw(120p) .
\fID\fR See \(sc 4.3.2.5
.T&
lw(60p) | lw(120p) .
\fIL \dMESTi \u\fR {
Mouth to ear sidetone loss (dB)
}
.T&
lw(60p) | lw(120p) .
\fISt\fR See \(sc 4.3.2.6
.TE
.LP
\fINote\ 1\fR
\ \ \fIL
\dMEi \u\fR = \(em\fIS \dMJi \u\fR
\(em \fIS \dJEi \u\fR + (\fIL\fR + \fId\fI).
.LP
\fINote\ 2\fR
\ \ \fISt\fR
| is calculated according to Recommendation P.79, \(sc 8.
.LP
\fINote\ 3\fR
\ \ \fIS
\dMJi
\u\fR
, \fIL\fR
| and \fIL
\dMEST
\u\fR
| only necessary to calculate \fIL
\dMEi
\u\fR
| and \fISt\fR .
.LP
\fINote\ 4\fR
\ \ \fIR\fI
| should be expanded \fIB
\dRNi
\u\fR .
.nr PS 9
.RT
.ad r
\fBTableau 4\(hy2 [T12.3], p.3\fR
.sp 1P
.RT
.ad b
.RT
.LP
.sp 4
.rs
.sp 22P
.ad r
\fBFIGURES 4\(hy2 ET 4\(hy3, p.4\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFIGURE 4\(hy4, p.5\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFIGURE 4\(hy5, p.6\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFIGURE 4\(hy6, p.7\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFIGURES 4\(hy7 ET 4\(hy8 A L'ITALIENNE COTE A COTE, p.10\(hy11\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFIGURES 4\(hy9 ET 4\(hy10 A L'ITALIENNE COTE A COTE, p.10\(hy11\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.ce
\fBH.T. [T13.3]\fR
.ce
TABLEAU\ 4\(hy3
.ce
\fBValues of a\fR\(da\fBi, b\fR\(da\fBi and c\fR\(da\fBi\fR
.ce
(interpolated from [48])
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
No. Frequency (Hz) \fIa\fI \fIb\fI \fIc\fI
_
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 1 \ 100 \(em33.5 1.570 \(em0.00269
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 2 \ 125 \(em25.7 1.500 \(em0.00258
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 3 \ 160 \(em19.4 1.444 \(em0.00248
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 4 \ 200 \(em14.7 1.404 \(em0.00242
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 5 \ 250 \(em10.8 1.362 \(em0.00231
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 6 \ 315 \ \(em7.4 1.314 \(em0.00214
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 7 \ 400 \ \(em4.7 1.259 \(em0.00185
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 8 \ 500 \ \(em3.0 1.205 \(em0.00151
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
\ 9 \ 630 \ \(em1.5 1.141 \(em0.00107
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
10 \ 800 \ \(em0.5 1.064 \(em0.00050
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
11 1000 \ \ 0.0 1.000 \ 0.00000
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
12 1250 \ \ 0.6 0.967 \ 0.00028
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
13 1600 \ \ 1.7 0.037 \ 0.00071
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
14 2000 \ \ 3.3 0.924 \ 0.00100
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
15 2500 \ \ 5.3 0.928 \ 0.00118
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
16 3150 \ \ 7.3 0.940 \ 0.00119
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
17 4000 \ \ 7.9 0.954 \ 0.00098
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
18 5000 \ \ 5.3 0.973 \ 0.00059
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
19 6300 \ \(em2.6 1.028 \ 0.00013
_
.TE
.nr PS 9
.RT
.ad r
\fBTableau 4\(hy3 [T13.3], p.12\fR
.sp 1P
.RT
.ad b
.RT
.LP
.sp 24
.bp
.ce
\fBH.T. [T14.3]\fR
.ce
TABLE\ 4\(hy4
.ce
\fBModel parameters\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
lw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
No. Frequency \(*D\fI\fI \fIB\fI \fIB\fI \fIX\fI \fIL \dRNE \u\fR 10 log 1 0 \fIG\fI \fIA\fI
_
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
Parameter type [A\(hy1] [A\(hy2] [A\(hy2] [A\(hy2] [A\(hy1] [A\(hy1]
_
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
Source Rec. P.51 \fIB\fI + 12 NTT 1968 NTT 1968 Rec. P.79 ISO
_
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
(Hz) (Hz) (dB) 20\ \(*mPa/Hz (dB) 20\ \(*mPa/Hz (dB) 20\ \(*mPa/Hz (dB) (dB) (dB)
_
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 1 \ 100 \ \ 22.4 57.2 69.2 \ 11.0 \ 0.0 \(em32.63 \(em19.1
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 2 \ 125 \ \ 29.6 60.0 72.0 \ \ 8.9 \ 0.0 \(em29.12 \(em16.1
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 3 \ 160 \ \ 37.5 62.1 74.1 \ \ 5.5 \ 0.0 \(em27.64 \(em13.4
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 4 \ 200 \ \ 44.7 62.9 74.9 \ \ 2.2 \ 0.0 \(em28.46 \(em10.9
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 5 \ 250 \ \ 57.0 63.0 75.0 \ \ 0.0 \ 0.0 \(em28.58 \ \(em8.6
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 6 \ 315 \ \ 74.3 62.4 74.4 \ \(em3.0 \ 0.7 \(em31.10 \ \(em6.6
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 7 \ 400 \ \ 92.2 61.0 73.0 \ \(em6.0 \ 0.0 \(em29.78 \ \(em4.8
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 8 \ 500 \ 114.0 59.3 71.3 \ \(em8.0 \ 0.0 \(em32.68 \ \(em3.2
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
\ 9 \ 630 \ 149.0 57.0 69.0 \ \(em9.5 \ 2.2 \(em33.21 \ \(em1.9
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
10 \ 800 \ 184.0 54.2 66.2 \(em10.3 \ 8.5 \(em34.14 \ \(em0.8
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
11 1000 \ 224.0 51.4 63.4 \(em11.0 13.5 \(em35.33 \ \ 0.0
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
12 1250 \ 296.0 48.5 60.5 \(em11.8 15.5 \(em37.90 \ \ 0.6
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
13 1600 \ 375.0 45.2 57.2 \(em13.0 20.0 \(em38.41 \ \ 1.0
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
14 2000 \ 447.0 42.2 54.2 \(em16.0 23.7 \(em41.25 \ \ 1.2
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
15 2500 \ 570.0 39.4 51.4 \(em19.8 30.0 \(em41.71 \ \ 1.3
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
16 3150 \ 743.0 36.8 48.8 \(em23.0 27.0 \(em45.80 \ \ 1.2
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
17 4000 \ 922.0 34.5 46.5 \(em26.0 33.5 \(em43.50 \ \ 1.0
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
18 5000 1140.0 32.7 44.7 \(em27.0 41.0 \(em47.13 \ \ 0.5
.T&
cw(30p) | cw(12p) | cw(24p) | cw(18p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) | cw(24p) .
19 6300 1490.0 31.4 43.4 \(em24.0 50.0 \(em48.27 \ \(em0.1
.TE
.LP
\fINote\fR
\ \ \fIX\fI
(=\fIB\fR
0\fI\fI
\(em \fIk\fI
) and \fIL
\dRNE
\u\fR
| can be input
parameters.
.nr PS 9
.RT
.ad r
\fBTableau 4\(hy4 [T14.3], p.13\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.ce
\fBH.T. [T15.3]\fR
.ce
TABLE\ 4\(hy5
.ce
\fBValues of estimated constants and coefficients\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
No. Related section Output Symbol Value
_
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
1 4.3.2.1 4.3.2.2 PI E L {
\fIC\fR
1
\fIC\fR
2
\(*l
0/\fIc\fR
\fIOLR\fR
0
} {
\ \ 0.0475\
\ \ 0.010\ \
\ \ 0.780\ \
\ \ 5.34\ \ \
}
_
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
2 4.3.2.3 PI I N {
\fIN\fI
\fIn\fR
\fIC\fR
3
} {
\ 33.0\ \ \ \
\ \ 0.50\ \ \
\ \ 0.012\ \
}
_
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
3 4.3.2.3 PI S N \fISNR\fI \fIC\fR 4 {
\ \ 7.5\ \ \ \
\ \(em0.005\ \
}
_
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
4 4.3.2.4 PI A D {
\fIL\fI
\fIC\fR
5
\fIC\fR
6
\(*L\fI\fI
} {
\ 57.5\ \ \ \
\ \ 0.043\ \
\ \ 0.043\ \
\ 15.0\ \ \ \
}
_
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
5 4.3.2.5 PI E C {
\fIC\fR
7
\fIC\fR
8
\fIC\fR
9
\fIC\fR
1
0
\fIC\fR
1
1
\fIC\fR
1
2
} {
\ 13.69\ \ \
\ \ 0.01\ \ \
\ 26.4\ \ \ \
\ \ 2.65\ \ \
\ 14.00\ \ \
\ 24.6\ \ \ \
}
_
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
6 4.3.2.6 PI S T {
\fIC\fR
1
3
\fIST\fR
0
} \ \ 0.00856 \ \ 9.000\ \
_
.T&
cw(36p) | cw(36p) | cw(36p) | cw(36p) | cw(36p) .
7 4.3.3\fB.6\fR MOS \fIP\fR 0 \(*s \ \ 3.558\ \ \ \ 0.730\ \
_
.TE
.nr PS 9
.RT
.ad r
\fBTableau 4\(hy5 [T15.3], p.14\fR
.sp 1P
.RT
.ad b
.RT
.ce 1000
ANNEX\ A
.ce 0
.ce 1000
(to Supplement No. 3 \(em ref. to \(sc 1.1)
.sp 9p
.RT
.ce 0
.ce 1000
\fBOpinion ratings of transmission impairments\fR
.sp 1P
.RT
.ce 0
.LP
A.1
\fIIntroduction\fR
.sp 1P
.RT
.PP
The figures in this annex illustrate the relative effect of typical transmission
impairments on opinion ratings. They are based on the transmission rating
models described above. The opinion ratings assume a
five\(hycategory rating scale (excellent, good, fair, poor and bad or
unsatisfactory) and the results are presented in terms of the percent of
ratings which are good or better (good plus excellent) and poor or worse
(poor plus bad). Three equations for the conversion from transmission rating
to the
.PP
opinion ratings are described above in the text of the Supplement. The one
which is used in this annex is representative of conversational test results
reported to the CCITT by several Administrations during the Study Period
1973\(hy1976.
.bp
.RT
.sp 1P
.LP
A.2
\fIOverall loudness rating and circuit noise\fR
.sp 9p
.RT
.PP
Opinion ratings for the combined effects of OLR
(\fIL\fR `
\fI\fI\d\fIe\fR\uin dB) and circuit noise (\fIN\fR `
\fI\fI\d\fIc\fR\uin
dBmp) are shown in Figures\ A\(hy1 and\ A\(hy2. The circuit noise is referred
to a
receiving system with an RLR of 0\ dB. In these figures the circuit noise
equivalent for room noise \fIN\fR `
\fI\fI\d\fIR\fR\\d\fIe\fR\uis \(em58.63\ dBmp and the
bandwidth/slope factor (\fIk\fR\d\fIB\fR\\d\fIW\fR\u) is\ 1; quantization
noise, listener echo, talker echo and sidetone are not included.
.RT
.sp 1P
.LP
A.3
\fIQuantization noise from PCM processes\fR
.sp 9p
.RT
.PP
Opinion results for the effect of quantization noise from tandem
7\ bit and 8\ bit \(*m\(hylaw and A\(hylaw PCM processes are shown in Figures\
A\(hy3 and\ A\(hy4. These results assume an OLR (\fIL\fR `
\fI\fI\d\fIe\fR\u) of 16\ dB and a
circuit noise (\fIN\fR `
\fI\fI\d\fIc\fR\u) of \(em56\ dBmp. Room noise,
bandwidth/slope and sidetone assumptions are the same as for \(sc\ A.2.
The speech level at the output of a telephone set with a 0\ dB SLR is assumed
to be
\(em10\ VU.
.RT
.LP
.sp 1P
.LP
A.4
\fIBandwidth\fR
.sp 9p
.RT
.PP
The effect on opinion rating as a function of bandwidth between
frequencies having 10\ dB of loss relative to 1000\ Hz is shown in Figures\
A\(hy5
and\ A\(hy6. These results assume an OLR (\fIL\fR `
\fI\fI\d\fIe\fR\u) of 16\ dB, a circuit noise (\fIN\fR `
\fI\fI\d\fIc\fR\u) of \(em56\ dBmp, a circuit noise
equivalent for room noise (\fIN\fR `
\fI\fI\d\fIR\fR\\d\fIe\fR\u) of \(em58.63\ dBmp,
and lower (\fIS\fR\d\fIl\fR\u) and upper (\fIS\fR\d\fIu\fR\u) slope factors
of\ 2 and
3\ respectively. Listener echo, talker echo and sidetone effects are not
included.
.RT
.sp 1P
.LP
A.5
\fIListener echo\fR
.sp 9p
.RT
.PP
The effect of listener echo on opinion ratings is illustrated in
Figures\ A\(hy7 and\ A\(hy8. In these figures the opinion is plotted (from
both the
original and alternate models of the supplement) as a function of the weighted
listener echo path loss (\fIWEPL\fR ) in dB and round\(hytrip listener
echo path delay (\fID\fR\d\fIL\fR\u) in milliseconds. The curves were calculated
assuming an OLR (\fIL\fR `
\fI\fI\d\fIe\fR\u) of 16\ dB, a circuit noise
(\fIN\fR `
\fI\fI\d\fIc\fR\u) of \(em56\ dBmp\fR , a circuit noise equivalent for
room noise (\fIN\fR `
\fI\d\fIR\fR\\d\fIe\fR\u) of \(em58.63\ dBmp, and a
bandwidth/slope factor of\ 1. Talker echo and sidetone effects are not
included.
.RT
.LP
.sp 1P
.LP
A.6
\fITalker echo\fR
.sp 9p
.RT
.PP
Opinion ratings for talker echo are presented in Figures A\(hy9
and\ A\(hy10 as a function of the OLR of the talker echo path (\fIE\fR
) in dB and the round\(hytrip talker echo path delay (\fID\fR ) in milliseconds.
Again, the OLR (\fIL\fR `
\fI\fI\d\fIe\fR\u) was taken as 16\ dB, the circuit noise
(\fIN\fR `
\fI\fI\d\fIc\fR\u) as \(em56\ dBmp, the circuit noise equivalent of
room noise (\fIN\fR `
\fI\fI\d\fIR\fR\\d\fIe\fR\u) as \(em58.63\ dBmp and the
bandwidth/slope factor as\ 1. Listener echo and sidetone effects are not
included.
.RT
.sp 1P
.LP
A.7
\fISidetone\fR
.sp 9p
.RT
.PP
Opinion ratings for sidetone are presented in Figures A\(hy11 and\ A\(hy12
in terms of the sidetone path loss (\fISTMR\fR ) in\ dB and the sidetone
response shape in\ dB/octave. For these curves, impairment levels were
selected to provide a constant \fIR\fR \fI\d\fIL\fR\\d\fIN\fR\uvalue typical
of toll calls in North
America and a range of \fIR\fR\d\fIE\fR\uvalues which might be encountered
on toll calls in North America.
.bp
.RT
.LP
.rs
.sp 26P
.ad r
\fBFigure A\(hy1, p.15
.sp 1P
.RT
.ad b
.RT
.LP
.rs
.sp 21P
.ad r
\fBFigure A\(hy2, p.
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 28P
.ad r
\fBFigure A\(hy3, p.17
.sp 1P
.RT
.ad b
.RT
.LP
.rs
.sp 20P
.ad r
\fBFigure A\(hy4, p.18
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 27P
.ad r
\fBFigure A\(hy5, p.19\fR
.sp 1P
.RT
.ad b
.RT
.LP
\fI\fR
.LP
.rs
.sp 20P
.ad r
\fBFigure A\(hy6, p.20\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 27P
.ad r
\fBFigure A\(hy7, p.21\fR
.sp 1P
.RT
.ad b
.RT
.LP
.rs
.sp 20P
.ad r
\fBFigure A\(hy8, p.22
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 27P
.ad r
\fBFigure A\(hy9, p.23
.sp 1P
.RT
.ad b
.RT
.LP
.rs
.sp 20P
.ad r
\fBFigure A\(hy10, p.24
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 28P
.ad r
\fBFigure A\(hy11, p.25\fR
.sp 1P
.RT
.ad b
.RT
.LP
.rs
.sp 20P
.ad r
\fBFigure A\(hy12, p.26\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.ce 1000
ANNEX\ B
.ce 0
.ce 1000
(to Supplement No. 3 \(em ref. to \(sc 2.9)
.sp 9p
.RT
.ce 0
.ce 1000
\fBCalculated transmission performance of telephone networks\fR
.sp 1P
.RT
.ce 0
.LP
B.1
\fIIntroduction\fR
.sp 1P
.RT
.PP
This annex is intended to give examples of results from the
subjective model which is incorporated in the BT CATNAP (Computer\(hyAided
Telephone Network Assessment Program) program. CATNAP comprises this model
and a transmission calculation section which enables elements of a connection
to be entered as readily identifiable items, e.g.\ lengths of cable, feed
bridges etc. These results are examples of calculations for various \*Qhypothetical
reference connections\*U (HRCs) which might arise in the network or would
be of use to
planners.
.PP
The loudness ratings quoted are calculated according to
Recommendation\ P.79, using the frequency bands from 200\ Hz to 4\ kHz. The
opinion scores, \fIY\fR\d\fIL\fR\\d\fIE\fR\uand \fIY\fR\d\fIC\fR\u, are
on a scale of 0 to 4,
representing the listening effort and conversation opinion scales
(see\ Supplement\ No.\ 2). The values of line current shown with the results
are determined by the program which decides from the characteristics of
the local telephone system which of a number of standard line currents
is appropriate,
and hence which values of the telephone instrument characteristics should be
used. The program also gives speech levels for controlled talking conditions
(\fIV\fR\d\fIL\fR\u) and under conversational conditions (\fIV\fR\d\fIC\fR\u).
These and the loudness ratings are referred to the interfaces (NI and FI)
shown in the
figures below.
.PP
These results are for the model as it stands at present
(1983\ version). Research is continuing to improve the correlation of calculated
and experimental results, so the model is liable to modification.
.RT
.sp 1P
.LP
B.2
\fIHRC\ 1\ \(em\ Own exchange call\fR | see Figure B\(hy1)
.sp 9p
.RT
.PP
This is a symmetrical connection, with average length customers'
lines. The sidetone suppression is fairly good, and room noise and circuit
noise levels are low. The conversation opinion score is good, but the small
overall loss means that the connection is louder than preferred. A slightly
quieter connection would give a better opinion score.
.RT
.LP
.sp 1P
.LP
B.3
\fIHRC\ 2\ \(em\ Limiting national call\fR | see Figure B\(hy2)
.sp 9p
.RT
.PP
These two HRCs are both symmetrical and comprise BT limiting
local lines of 1000\(*W/10\ dB, 4.5\ dB local junctions and two 4\(hywire
junctions
each with 3.5\ dB loss, which are the limits set by the BT transmission plan
(given in\ [29]).
.PP
HRC 2 (a) uses 0.5 mm copper local lines, which provide much better
sidetone matching than the 0.9\ mm copper lines of HRC 2 (b). The change in
sidetone level (> | 0\ dB) causes a drop in the conversation opinion score
from 1.9 to 0.8 (from fair to poor).
.RT
.sp 1P
.LP
B.4
\fIHRC\ 3\ \(em\ Long distance call with a PCM junction\fR | see Figure
B\(hy3)
.sp 9p
.RT
.PP
The overall loss of this connection (OLR = 13.4 dB) is much less
than for HRC 2. The local lines are average length of 0.5\ mm copper which
give reasonably good sidetone matching, and there is now only one local
junction.
This is a 4\(hywire 3\ dB PCM junction. This is entered as a single item,
characterised by the terminating and balance impedances of the 2/4\(hywire
terminating sets, the matched loss in each direction and the phase delay
round the loop. Quantizing noise is negligible for the input speech levels
calculated by CATNAP for this connection.
.PP
The connection is symmetrical in transmission loss but a small
difference in the sidetone level has given slightly different conversation
opinion scores at the two ends.
.bp
.RT
.sp 1P
.LP
B.5
\fIHRC\ 4\ \(em\ Asymmetry of transmission loss\fR | see Figure B\(hy4)
.sp 9p
.RT
.PP
A number of calculations have been done for this HRC to show the
effect of varying the degree of asymmetry. The curves shown are not fitted
curves, but simply join the marked points on the graph. They show the effect
on the
conversation opinion score
and
conversational speech
voltage
of varying the transmission loss in one direction only (from near end to
far end). The loss from far to near is kept constant, so the opinion of
the near end customer is much less affected. It is suspected that the speech
voltage curves are too divergent and further research is needed in this
area, but the opinion curves show similar trends to the results produced
by
Boeryd\ [30].
.PP
The sidetone level was virtually unaffected by the change in
transmission loss.
.RT
.LP
.sp 1P
.LP
B.6
\fIHRC\ 5\ \(em\ Effect of room noise\fR | see Figure B\(hy5)
.sp 9p
.RT
.PP
The calculations done for this HRC demonstrate the effect of
changing the level of room noise for a customer with a loud sidetone path
(near end) and one with a quiet sidetone path (far end). As for HRC\ 4,
the computed points are simply joined to form the line.
.RT
.sp 1P
.LP
B.7
\fIHRC\ 6\ \(em\ Effect of circuit noise and bandlimiting\fR | see
Figure B\(hy6)
.sp 9p
.RT
.PP
This is a connection using 4\(hywire reference telephones, enabling
sidetone to be controlled. The STMR is kept at 20\ dB, at which level most
customers would not detect it.
.PP
Such a connection can be used to investigate the effects of
particular transmission impairments varied independently. Here it has been
used to demonstrate the effect on the listening effort and conversation
opinion
scores of the level of injected circuit noise and band limiting (lowpass)
over a range of losses likely to occur in telephone networks.
.PP
As for the previous curves the computed points are simply joined to
form a line.
.RT
.LP
.sp 1P
.LP
B.8
\fIHRC\ 7\ \(em\ Multiple calculations with random selection of items\fR
| see Figure\ B\(hy7)
.sp 9p
.RT
.PP
CATNAP is intended to help assess telephone network proposals
rather than single connections. The program can perform multiple calculations
on a group of connections or on a single connection with random selection
of
elements from a database.
.PP
Here random selection is made of the customers' lines out of a
database derived from a survey of 1800\ existing lines. This enables the
performance of a particular element to be tested for a range of conditions
which would arise in the actual network. Since the survey reflects the
distribution of lengths and gauges in the actual network, this method of
assessment gives a more accurate picture of the performance in the existing
network.
.PP
For this example only a few calculations have been done to
demonstrate the facility and so the results have been printed. This is not
practical for large numbers of calculations, when the results are stored and
can be processed as desired, e.g.\ by plotting the distribution or by
statistical analysis.
.PP
The line number and radial distance have been given for both ends of each
calculation.
.RT
.sp 1P
.LP
B.9
\fIHRC\ 8\ \(em\ Example of the use of CATNAP to meet a design criterion\fR
| see Figure\ B\(hy8)
.sp 9p
.RT
.PP
This is intended to give an example of the use of CATNAP in the
design of individual network components to meet design targets.
.PP
With the introduction of electronic telephones the designer has a
freer choice of values for the telephone instrument characteristics,
e.g.\ the value of the line impedance which must be connected to the telephone
instrument to give full sidetone suppression (\fIZ\fR\d\fIs\fR\\d\fIo\fR\u).
.PP
An iterative procedure can lead to preferred values for
\fIZ\fR\d\fIs\fR\\d\fIo\fR\u.
As examples, calculations have been done for a standard BT\ 706 and a\ 706
with some trial values for \fIZ\fR\d\fIs\fR\\d\fIo\fR\uon BT limiting lengths
of local copper cable of standard gauges, and an average length of 0.5\
mm cable. For one of the trial sets of values which looks possible from
these results and for a standard 706 instrument, a set of 40 calculations
was done
.bp
.PP
with random
selection of
local lines from the database of 1800 used for HRC\ 7. These results are
given in terms of the mean and standard deviation of the distribution of
STMRs. From this it can be seen that the trial values do give a better
performance on
.PP
average, although the performance is worse on 0.63\ mm and 0.9\ mm limiting
lines, since these are less common in the local network than 0.5\ mm.
.PP
As a design tool, the program could be used further to verify the
improvement in performance, to check the effects of tolerances and to consider
possible improvements to these values.
.RT
.sp 1P
.LP
B.10
\fIHRC\ 9\ \(em\ Effect of varying line length\fR | see Figure B\(hy9)
.sp 9p
.RT
.PP
This HRC is identical to HRC 2 except for the gauge of cable. In
this case 0.63\ mm copper cable is used. Its length is varied from zero to
10\ km, which is beyond the BT limiting length (7.2\ km).
.PP
The results are shown as curves of conversation opinion score, OLR and
conversational speech voltage against line length. As before, the computed
points are simply joined to form a line.
.PP
The calculations on this HRC have been included to demonstrate the
\*Qinverse\*U use of CATNAP. The limits on OLR are known (from the transmission
plan) and so these runs could be used to show what range of cable lengths
are acceptable. The facility for calculating the performance in terms of
conversation opinion score makes it possible to specify performance limits
in terms of this, which is closer to the real performance than limits set
in terms of loudness ratings.
.RT
.LP
.rs
.sp 33P
.ad r
\fBFigure B\(hy1, p.27\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFigure B\(hy2, p.28\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFigure B\(hy3, p.29\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFigure B\(hy4, p.30\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFigure B\(hy5, p.31\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFigure B\(hy6, p.32\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFigure B\(hy7, p.33\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 18P
.ad r
\fBFigure B\(hy8, p.34\fR
.sp 1P
.RT
.ad b
.RT
.ce
\fBH.T. [T16.3]\fR
.ce
TABLE\ B\(hy1
.ce
\fBValues of STMR (dB) for specified lines (copper conudctors)\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
lw(66p) | cw(30p) | cw(36p) | cw(30p) | cw(36p) | cw(30p) , ^ | ^ | c s s s.
\fIZ\fI 1.6 km 0.5 mm (median) 6 km 0.5 mm 3.7 km 0.4 mm 7.2 km 0.63 mm 10 km 0.9 mm
(limiting)
_
.T&
lw(66p) | cw(30p) | cw(36p) | cw(30p) | cw(36p) | cw(30p) .
706 \ 9.9 \ 15.7 \ \ 7.2 \ 7.5 \ 0.0
_
.T&
lw(66p) | cw(30p) | cw(36p) | cw(30p) | cw(36p) | cw(30p) .
{
Conjugate of input \fIZ\fR
} \ 1.8 \ \ 1.1 \ \ 0.6 \(em0.2 \(em0.6
_
.T&
lw(66p) | cw(30p) | cw(36p) | cw(30p) | cw(36p) | cw(30p) .
600 \(*W \ 6.6 \(em0.8 \ \(em1.2 \(em2.0 \(em3.0
_
.T&
lw(66p) | cw(30p) | cw(36p) | cw(30p) | cw(36p) | cw(30p) .
Suggested values 10.2 \ 13.4 \ 13.8 \ 4.4 \(em1.3
_
.TE
.nr PS 9
.RT
.ad r
\fBTableau [B\(hy1] [T16.3], p35\fR
.sp 1P
.RT
.ad b
.RT
.ce
\fBH.T. [T17.3]\fR
.ce
TABLE\ B\(hy2
.ce
\fBDistribution of STMR for a sample of 40 lines for a Standard 706\fR
.ce
\fBand the suggested values of\fR
.ce
\fIZ\fI
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
lw(66p) | cw(36p) | cw(42p) | cw(42p) | cw(42p) .
\fIZ\fI Mean Standard deviation Maximum value Minimum value
_
.T&
lw(66p) | cw(36p) | cw(42p) | cw(42p) | cw(42p) .
706 8.3 \(+- | .5 14.1 3.8
_
.T&
lw(66p) | cw(36p) | cw(42p) | cw(42p) | cw(42p) .
Suggested values 9.4 \(+- | .1 17.9 4.2
_
.TE
.nr PS 9
.RT
.ad r
\fBTableau B\(hy2 [T17.3], p.36\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
.rs
.sp 47P
.ad r
\fBFigure B\(hy9, p.\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.ce 1000
ANNEX\ C
.ce 0
.ce 1000
(to Supplement No. 3 \(em ref. to \(sc 4.3.1.2)
.sp 9p
.RT
.ce 0
.ce 1000
\fBNoise spectrum calculation\fR
.sp 1P
.RT
.ce 0
.PP
Expansion from the scalar value of noise to the spectrum values of both
room noise and circuit noise is necessary (see Figure\ 4\(hy4). The spectrum
value database of \fIR\fR\d\fIN\fR\u(60\ dBA) and\ \fIV\fR\d\fIc\fR\u(\(em56.0\
dBmp) is shown in
Table\ C\(hy1. The value of room noise is taken from Figure\ 2/P.45\ [50] and
Figure\ 1 of Supplement\ No.\ 13. \fIV\fR\d\fIc\fR\uis a mixture of circuit
noise and
switching office noise. They are expressed by flat noise and \(em8\ dB/octave
noise, respectively. If only a scalar noise level is known as a test condition,
.sp 1P
.RT
.LP
and its spectrum value is not known, then a mixed noise spectrum is used in
OPINE in which \(em8\ dB octave noise is 10\ dB lower than flat noise.
Moreover,
SRAEN characteristics are added to the flat noise characteristics.
.LP
.sp 2
.ce
\fBH.T. [T18.3]\fR
.ce
TABLE\ C\(hy1
.ce
\fBNoise spectrum value used in OPINE\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
cw(36p) | cw(36p) | lw(42p) | lw(36p) | lw(42p) | lw(36p) .
\fIR\fI | = 60 dBA \fIV\fI | = \(em56.0 dBmp
_
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
No. Frequency \fIB \dRNi \u\fR \fIV\fR \dflat \u + SRAEN \fIV\fR \d\(em8/oct \u {
\fIV
\dCQi
\u\fR
| =
\fIV\fR
\dflat
\u (+)
\fIV\fR
\d\(em8/oct
\u
}
_
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
(Hz) (dB) 20 \(*mPa/Hz (dBV/Hz) (dBV/Hz) (dBV/Hz)
_
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 1 \ 100 42.07 \(em112.91 \ \(em75.25 \ \(em75.25
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 2 \ 125 40.67 \(em102.61 \ \(em77.95 \ \(em77.93
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 3 \ 160 39.07 \ \(em98.11 \ \(em80.55 \ \(em80.47
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 4 \ 200 37.37 \ \(em96.81 \ \(em83.25 \ \(em83.06
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 5 \ 250 35.87 \ \(em95.21 \ \(em85.95 \ \(em85.46
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 6 \ 315 34.37 \ \(em93.31 \ \(em88.55 \ \(em87.29
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 7 \ 400 32.87 \ \(em92.41 \ \(em91.25 \ \(em88.78
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 8 \ 500 31.17 \ \(em91.91 \ \(em93.85 \ \(em89.76
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 9 \ 630 29.57 \ \(em91.51 \ \(em96.55 \ \(em90.32
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
10 \ 800 27.87 \ \(em91.21 \ \(em99.25 \ \(em90.57
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
11 1000 26.37 \ \(em91.21 \(em101.95 \ \(em90.86
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
12 1250 24.77 \ \(em91.21 \(em104.55 \ \(em91.01
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
13 1600 23.07 \ \(em91.11 \(em107.25 \ \(em91.00
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
14 2000 21.37 \ \(em91.01 \(em109.95 \ \(em90.95
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
15 2500 19.57 \ \(em91.01 \(em112.55 \ \(em90.98
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
16 3150 17.37 \ \(em91.21 \(em115.25 \ \(em91.19
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
17 4000 14.87 \(em178.71 \(em117.95 \(em117.95
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
18 5000 12.17 \(em291.21 \(em120.55 \(em120.55
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
19 6300 \ 9.37 \(em291.21 \(em123.25 \(em123.25
_
.TE
.nr PS 9
.RT
.ad r
\fBTable C\(hy1 [T18.3], p.\fR
.sp 1P
.RT
.ad b
.RT
.LP
.sp 3
.bp
.ce 1000
ANNEX\ D
.ce 0
.ce 1000
(to Supplement No. 3 \(em ref. to \(sc 4.3.3)
.sp 9p
.RT
.ce 0
.ce 1000
\fBMDS calculation examples\fR
.sp 1P
.RT
.ce 0
.PP
The test condition with an NTT 600 type telephone and a 0.4 mm,
7\ dB line as a local telephone
circuit\ (LTC)\ is considered here. Input
data
concerning the LTC is shown in Table\ D\(hy1. In this connection,
SLR\ =\ 6.6\ dB, and RLR\ =\ \(em3.8\ dB. The test conditions and calculated
results for fundamental factors are shown in Table\ D\(hy2.
.sp 1P
.RT
.PP
The output of the overall electro\(hyacoustic calculation (\(sc\ 4.3.1)
for test condition\ No.\ 11 in Table\ D\(hy2 is shown in Figure\ D\(hy1,
where OLR is
6.4\ dB.
.LP
.sp 2
.ce
\fBH.T. [T19.3]\fR
.ce
TABLE\ D\(hy1
.ce
\fBLocal telephone circuit sensitivity\fR
.ce
\fB(NTT 600\(hytype telephone set with a 0.4 mm, 7 dB line)\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
No. Frequency \fIS \dMJi \u\fR \fIS \dJEi \u\fR \fIL \dMESTi \u\fR \fIL \dRNSTi \u\fR
_
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
(Hz) (dB) rel V/Pa (dB) rel Pa/V (dB) (dB)
_
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 1 \ 100 \(em22.3 \(em40.0 \ 5.3 \ 28.6
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 2 \ 125 \(em25.1 \ \(em2.7 \ 6.7 \ 26.3
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 3 \ 160 \(em23.8 \ \ 2.5 \ 5.0 \ 20.8
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 4 \ 200 \(em18.8 \ \ 7.3 \ 2.3 \ 14.1
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 5 \ 250 \(em14.4 \ 11.3 \(em3.0 \ 5.6
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 6 \ 315 \(em12.3 \ 14.6 \(em6.4 \(em1.3
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 7 \ 400 \(em12.5 \ 15.9 \(em5.6 \(em1.8
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 8 \ 500 \(em12.6 \ 15.7 \(em3.6 \(em0.3
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
\ 9 \ 630 \(em12.3 \ 14.9 \(em2.1 \ 2.8
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
10 \ 800 \(em11.9 \ 14.4 \(em0.4 \ 3.9
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
11 1000 \(em11.6 \ 14.5 \ 0.1 \ 3.4
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
12 1250 \(em12.0 \ 14.8 \ 0.0 \ 3.1
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
13 1600 \(em12.0 \ 14.1 \ 0.1 \ 0.1
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
14 2000 \ \(em9.8 \ 14.4 \(em3.3 \(em2.1
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
15 2500 \(em10.0 \ 16.2 \(em5.0 \ 3.4
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
16 3150 \(em11.0 \ 11.5 \ 2.7 \ 15.0
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
17 4000 \(em16.8 \ \ 8.9 \ 11.1 \ 22.3
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
18 5000 \(em27.9 \(em30.0 \ 28.1 \ 35.1
.T&
cw(36p) | cw(36p) | cw(42p) | cw(36p) | cw(42p) | cw(36p) .
19 6300 \(em32.0 \(em30.0 \ 32.7 \ 35.3
_
.TE
.nr PS 9
.RT
.ad r
\fBTableau D\(hy1 [T19.3], p.39\fR
.sp 1P
.RT
.ad b
.RT
.LP
.sp 8
.bp
.ce
\fBH.T. [T20.3]\fR
.ce
TABLE\ D\(hy2
.ce
\fBExample of estimated results for fundamental factors by
.ce
OPINE\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
cw(120p) | cw(36p) | cw(72p) .
{
Test conditions
(STMR = 7.1 dB)
} Conversion to OPINE input Output
_
.TE
.TS
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
No. Noise OLR (dB) R N (dBA) Circuit noise (dBmp) Switching noise (dBmp) {
Frequency charac\(hy
teristic
(see
Table D\(hy3)
} OLR (dB) L (dB) V C (dBmp) PI E L PI N PI A D PI S T OPI MOS
_
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 1 \(em3.8 \ 0 1 \(em3.6 \(em7.3 \(em95.1 0.63 0.00 0.19 0.15 0.97 2.58
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 2 \ 1.2 \ 0 1 \ 1.4 \(em2.3 \(em95.1 0.23 0.00 0.10 0.15 0.49 3.04
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 3 \ 6.2 \ 0 1 \ 6.4 \ 2.7 \(em95.1 0.03 0.00 0.09 0.15 0.27 3.23
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 4 \ 11.2 \ 0 1 \ 11.4 \ 7.7 \(em95.1 0.40 0.00 0.12 0.15 0.67 2.88
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 5 \ 16.2 \ 0 1 \ 16.4 \ 12.7 \(em95.1 0.80 0.00 0.08 0.15 1.03 2.52
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 6 \ 21.2 \ 0 1 \ 21.4 \ 17.7 \(em95.1 1.20 0.00 0.04 0.15 1.40 2.16
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 7 \ 26.2 \ 0 1 \ 26.4 \ 22.7 \(em95.1 1.61 0.00 0.04 0.15 1.81 1.75
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 8 \ 31.2 \ 0 1 \ 31.4 \ 27.7 \(em95.1 2.02 0.00 0.02 0.15 2.20 1.37
_
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
\ 9 \(em3.8 60 \(em56.9 \(em62.2 1 \(em3.6 \(em7.3 \(em55.8 0.56 0.21 0.19 0.15 1.12 2.44
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
10 \ 1.2 60 \(em56.9 \(em62.2 1 \ 1.4 \(em2.3 \(em55.8 0.14 0.21 0.10 0.15 0.61 2.93
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
11 \ 6.2 60 \(em56.9 \(em62.2 1 \ 6.4 \ 2.7 \(em55.8 0.15 0.21 0.09 0.15 0.60 2.94
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
12 \ 11.2 60 \(em56.9 \(em62.2 1 \ 11.4 \ 7.7 \(em55.8 0.60 0.21 0.12 0.15 1.08 2.48
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
13 \ 16.2 60 \(em56.9 \(em62.2 1 \ 16.4 \ 12.7 \(em55.8 1.09 0.21 0.08 0.15 1.54 2.02
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
14 \ 21.2 60 \(em56.9 \(em62.2 1 \ 21.4 \ 17.7 \(em55.8 1.62 0.21 0.04 0.15 2.03 1.53
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
15 \ 26.2 60 \(em56.9 \(em62.2 1 \ 26.4 \ 22.7 \(em55.8 2.21 0.23 0.04 0.15 2.64 0.95
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
16 \ 31.2 60 \(em56.9 \(em62.2 1 \ 31.4 \ 27.7 \(em55.8 2.87 0.26 0.02 0.15 3.30 0.41
_
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
17 \ 1.2 60 \(em56.9 1 \ \ 1.4 \(em2.3 \(em57.0 0.15 0.16 0.10 0.15 0.57 2.97
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
18 \ 11.2 60 \(em56.9 1 \ 11.4 \ 7.7 \(em57.0 0.59 0.16 0.12 0.15 1.02 2.53
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
19 \ 21.2 60 \(em56.9 1 \ 21.4 \ 17.7 \(em57.0 1.61 0.16 0.04 0.15 1.96 1.60
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
20 \ 31.2 60 \(em56.9 1 \ 31.4 \ 27.7 \(em57.0 2.84 0.21 0.02 0.15 3.23 0.47
_
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
21 \ \ 1.2 50 \(em56.9 \(em62.2 1 \ \ 1.4 \(em2.3 \(em55.8 0.17 0.21 0.10 0.15 0.64 2.90
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
22 \ 11.2 50 \(em56.9 \(em62.2 1 \ 11.4 \ 7.7 \(em55.8 0.53 0.21 0.12 0.15 1.01 2.54
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
23 \ 21.2 50 \(em56.9 \(em62.2 1 \ 21.4 \ 17.7 \(em55.8 1.48 0.21 0.04 0.15 1.89 1.67
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
24 \ 31.2 50 \(em56.9 \(em62.2 1 \ 31.4 \ 27.7 \(em55.8 2.59 0.22 0.02 0.15 2.99 0.65
_
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
25 \ \ 1.2 45 \(em68.2 \(em68.2 1 \ \ 1.4 \(em2.3 \(em65.2 0.20 0.02 0.10 0.15 0.48 3.05
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
26 \ 13.2 45 \(em68.2 \(em68.2 1 \ 13.4 \ 9.7 \(em65.2 0.63 0.02 0.12 0.15 0.92 2.63
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
27 \ 26.2 45 \(em68.2 \(em68.2 1 \ 26.4 \ 22.7 \(em65.2 1.80 0.02 0.04 0.15 2.02 1.55
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
28 \ \ 1.2 45 \(em63.8 \(em68.2 1 \ \ 1.4 \(em2.3 \(em62.5 0.20 0.04 0.10 0.15 0.50 3.03
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
29 \ 13.2 45 \(em63.8 \(em68.2 1 \ 13.4 \ 9.7 \(em62.5 0.65 0.04 0.12 0.15 0.96 2.60
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
30 \ 26.2 45 \(em63.8 \(em68.2 1 \ 26.4 \ 22.7 \(em62.5 1.84 0.04 0.04 0.15 2.07 1.49
_
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
31 \ \ 2.2 60 \(em56.9 \(em62.2 3 \ \ 2.5 \(em2.4 \(em55.8 0.07 0.21 0.28 0.15 0.72 2.83
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
32 \ 12.2 60 \(em56.9 \(em62.2 3 \ 12.5 \ 7.6 \(em55.8 0.69 0.21 0.20 0.15 1.25 2.30
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
33 \ 22.2 60 \(em56.9 \(em62.2 3 \ 22.5 \ 17.6 \(em55.8 1.71 0.21 0.12 0.15 2.19 1.37
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
34 \ 32.2 60 \(em56.9 \(em62.2 3 \ 32.5 \ 27.6 \(em55.8 2.95 0.26 0.04 0.15 3.41 0.35
_
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
35 \ \ 4.1 60 \(em56.9 \(em62.2 7 \ \ 5.1 \(em2.3 \(em55.8 0.02 0.21 0.45 0.15 0.84 2.71
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
36 \ 14.1 60 \(em56.9 \(em62.2 7 \ 15.1 \ 7.7 \(em55.8 0.89 0.21 0.31 0.15 1.57 1.99
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
37 \ 24.1 60 \(em56.9 \(em62.2 7 \ 25.1 \ 17.7 \(em55.8 1.92 0.22 0.18 0.15 2.47 1.10
.T&
cw(12p) | cw(24p) | cw(12p) | cw(24p) | cw(24p) | cw(24p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) | cw(12p) .
38 \ 34.1 60 \(em56.9 \(em62.2 7 \ 35.1 \ 27.7 \(em55.8 3.16 0.27 0.06 0.15 2.64 0.23
_
.TE
.nr PS 9
.RT
.ad r
\fBTableau D\(hy2 [T20.3], p.40\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.ce
\fBH.T. [T21.3]\fR
.ce
TABLE\ D\(hy3
.ce
\fBAttenuation/frequency characteristics used in
.ce
Table D\(hy2\fR
.ps 9
.vs 11
.nr VS 11
.nr PS 9
.TS
center box;
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
Frequency 1 2 3
_
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\fB.\fR (Hz) SRAEN (dB) (Note 1) (dB) (Note 2) (dB)
_
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 100 \ \ 21.7 \ 40.0 76.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 125 \ \ 11.4 \ 32.0 60.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 160 \ \ \ 6.9 \ 23.0 47.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 200 \ \ \ 5.6 \ 17.2 36.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 250 \ \ \ 4.0 \ 12.0 24.5
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 315 \ \ \ 2.1 \ \ 6.5 15.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 400 \ \ \ 1.2 \ \ 2.5 \ 7.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 500 \ \ \ 0.7 \ \ 1.0 \ 2.5
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 630 \ \ \ 0.3 \ \ 0.5 \ 0.5
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
\ 800 \ \ \ 0.0 \ \ 0.0 \ 0.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
1000 \ \ \ 0.0 \(em0.1 \ 0.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
1250 \ \ \ 0.0 \(em0.1 \ 0.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
1600 \ \(em0.1 \(em0.3 \ 0.2
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
2000 \ \(em0.2 \(em0.1 \ 0.9
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
2500 \ \(em0.2 \ \ 0.5 \ 2.5
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
3150 \ \ \ 0.0 \ \ 4.0 \ 9.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
4000 \ 87.5 \ 12.5 19.5
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
5000 200.0 \ 22.0 30.0
.T&
cw(48p) | cw(48p) | cw(48p) | cw(48p) .
6300 200.0 \ 32.0 41.0
.TE
.LP
\fINote 1\fR
\ \(em\ Three 4\(hywire circuit chains, 50% limit characteristics.
.LP
\fINote 2\fR
\ \(em\ Seven 4\(hywire circuit chains, 95.5% limit
characteristics.
.nr PS 9
.RT
.ad r
\fBTableau D\(hy3 [T21.3], p.41\fR
.sp 1P
.RT
.ad b
.RT
.LP
.rs
.sp 22P
.LP
.bp
.LP
.rs
.sp 31P
.ad r
\fBFigure D\(hy1, p.42\fR
.sp 1P
.RT
.ad b
.RT
.ce 1000
ANNEX\ E
.ce 0
.ce 1000
(to Supplement No. 3 \(em ref. to \(sc 4.3.2.2)
.sp 9p
.RT
.ce 0
.ce 1000
\fBDerivation of equation (4\(hy16)\fR
.sp 1P
.RT
.ce 0
.ad r
.sp 2
.ad b
.RT
.ad r
.ad b
.RT
.LP
.bp
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.PP
In employing equations (4\(hy15) and (4\(hy16), a constant is necessary
for each, that is \(*l\d0\u/C for (4\(hy15) and OLR\d0\ufor (4\(hy16).
Adaptation of the values in Table\ 4\(hy5 allows a 0.004 error for two
different \fIPI\fI\d\fIE\fR\\d\fIL\fR\u
calculations. This error, however, does not cause further errors in subsequent
calculations.
.ce 1000
ANNEX\ F
.ce 0
.ce 1000
(to Supplement No. 3 \(em ref. to \(sc 4.3.3)
.sp 9p
.RT
.ce 0
.ce 1000
\fBPsychological evaluation model\fR
.sp 1P
.RT
.ce 0
.PP
This Annex gives a detailed derivation of equations (4\(hy34) and
(4\(hy35). The model is a complete adaptation of\ [49].
.sp 1P
.RT
.sp 1P
.LP
F.1
\fIPsychological model for evaluation\fR
.sp 9p
.RT
.PP
According to the model in reference [49], an evaluation value for a test
condition on a psychological continuum is shown in Figure\ F\(hy1. \fIp\fR\d\fIK\fR\uis
defined on page\ 10 of the reference, and is the probability of voting\
\fIK\fR as an opinion score for a test condition. The correspondences of
opinion scores to
ranges in the psychological continuum are:
.RT
.LP
.sp 1
\fIContinuum range\fR \fIOpinion score\fR \(em \(if
0.5
0
0.5
1.5
1
1.5
2.5
2
2.5
3.5
3
3.5
\(if
4
.LP
.rs
.sp 3P
.ad r
\fBFigure F\(hy1, p.\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.LP
These assumptions satisfy the following equation:
.ad r
.ad b
.RT
.LP
which is the same as equation (4\(hy34).
.sp 1P
.LP
F.2
\fIDerivation of equation (4\(hy35) from equation (4\(hy34)\fR
.sp 9p
.RT
.PP
The cumulative probability of N (\(*m, \(*s | u2\d) is expressed using a
standard normal distribution function as follows:
\v'6p'
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.PP
By changing the multiplication into a repetition of additions, and by changing
the association (combination) of addition, equation\ (F\(hy3)
becomes:
\v'6p'
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.ad r
.ad b
.RT
.PP
Replacement of \(*m by \fIP\fR results in equation (4\(hy35), which then
enables the use of a standard normal distribution table.
.bp
.ce 1000
APPENDIX\ I
.ce 0
.ce 1000
(to Supplement No. 3 \(em reference to \(sc\ 3.2.2)
.sp 9p
.RT
.ce 0
.LP
10\ \ PRINT\ \*QCALCULATION OF INFORMATION INDEX FOR CODECS AND MNRU\*U
.sp 1P
.RT
.LP
20\ \ REM\ New frequency weighting, Ti from BOSQUET, new equivalence
with MNRU
.LP
30\ \ REM\ PROGRAM ICQSKBE2, BAS, June 1987, written in MF BASIC
.LP
40\ \ INPUT\ \*QSYSTEM\*U; S$
.LP
50\ \ INPUT\ \*QMOS\*U; Y$
.LP
60\ \ INPUT\ \*QK1(0 for MNRU, 5.2 in other cases)=\*U; K1
.LP
70\ \ DATA\ .05457, 4.1, .04733, 5.6, .06682,
6.4, .07497, 6.9, .06546, 7.4, .06622, 7.8, .05585,
8, .054, 8, .05273, 8.2,
\ \ \ \ .05117, 8.2
.LP
80\ \ DATA\ .04517, 8.2, .04706, 8.2, .05073,
8.2, .05561, 8.2, .0631, 8.2, 06886, 8.1
.LP
90\ \ INPUT\ \*QQSEG over the band\(emQP=d(0 for MNRU and PCM)\*U; SM
.LP
100\ REM\ calculation for codecs (for MNRU if K1=d=0)
.LP
110\ FOR\ J=1 to 16
.LP
120\ PRINT\ \*QQseg over the band No\*U; J
.LP
130\ INPUT\ QS
.LP
140\ READ\ B, C
.LP
150\ QC=QS+C
.LP
160\ K2=1(1+EXP(\(em.159673*QC+.157246))
.LP
170\ Q=K1+QC+K2*SM
.LP
180\ V=3/(.1+10 \* | (\(emQ/10))
.LP
190\ I=B*V
.LP
200\ II=II+I
.LP
210\ NEXT\ J
.LP
220\ REM\ Display of results
.LP
230\ PRINT\ S$,\*QII=\*U; II
.LP
240\ LPRINT\*Q\ \ \ \*U; S$; TAB(20); K1; TAB(30);
SM; TAB(40); II; TAB(50); Y$; TAB(60)
.LP
250\ END
.LP
.rs
.sp 13P
.ad r
\fBTable T22.3, p.\fR
.sp 1P
.RT
.ad b
.RT
.LP
.bp
.ce 1000
APPENDIX\ II
.ce 0
.ce 1000
(to Supplement No. 3 \(em reference to \(sc\(sc\ 3.2.2 and 3.3)
.sp 9p
.RT
.ce 0
.LP
10\ \ PRINT\ \*QCalculation of Information Index for NTT 600 sets (7\ dB
line)\*U
.sp 1P
.RT
.LP
20\ \ REM\ Program INT600E5 , written in MF Basic, September 1987
.LP
30\ \ INPUT\ \*QRoom noise,dBA=\*U; RN
.LP
40\ \ INPUT\ \*QSTMR,dB=\*U; STMR
.LP
50\ \ INPUT\ \*QCircuit noise level (dBm, sign changed) at input to
0\ dB
\ \ \ \ RLR end\*U; I
.LP
60\ \ ICNO=\(emI
.LP
70\ \ INPUT\ \*QListening (L) or conversation (C) or terminate (T)\*U; A$
.LP
80\ \ IP\ A$=\*QT\*U GOTO 640
.LP
90\ \ IF\ A$=\*QC\*U GOTO 560
.LP
100\ INPUT\ \*QOverall loudness rating (P79),dB=\*U; OLR
.LP
110\ LPRINT\ \*Q\ \ \ OLR=\*U; OLR
.LP
120\ GOSUB\ 730
.LP
130\ REM\ Correction for excessive loudness
.LP
140\ IF\ OLR>OPT GOTO 380
.LP
150\ \(mu=2*OPT\(emOLR
.LP
160\ GOTO\ 390
.LP
170\ DIM\ FE (20), CN(20), ST(20), EL(20), BK(20), S(20), BJ(20), CJ(20),
SRL(20), B1(20)
.LP
180\ DATA\ \(em36.2, \ \(em76.9, \ \ \(em4.1, \ 32.4, \ 17.5, | 56.0, |
.00804, | 0 | \ , | \ 62.3, | \ 21.7
.LP
190\ DATA\ \(em26.2, \ \(em34.9, \ \ \(em3 | , \ 31.2, \ 14.4, | 61.1, |
.01042, | 1.25, | \ 27.8, | \ 11.4
.LP
200\ DATA\ \(em18.3, \ \(em24 | , \ \ \ \ .8, \ 29.5, \ 10 | , | 62.5, |
.0138\ , | 2 | \ , | \ 21.3, | \ \ 6.9
.LP
210\ DATA\ \ \(em9.9, \ \(em13.2, \ \ \ 5.6, \ 27.6, \ \ 5 | , | 64.3, |
.01788, | 2.6\ , | \ 11.5, | \ \ 5.6
.LP
220\ DATA\ \ \(em2.1, \ \ \(em3.1, \ \ 12.7, \ 26.2, \ \ 2.5, | 64 | , |
.02392, | 3.5\ , | \ \ 3.1, | \ \ 4 |
.LP
230\ DATA\ \ \ 2.2, \ \ \ 6.9, \ \ 16.4, \ 22.3, \ \ \(em.4, | 60.7, |
.03246, | 4.9\ , | \(em2.3, | \ \ 2.1
.LP
240\ DATA\ \ \ 3.9, \ \ 11.1, \ \ 16.6, \ 22.7, \ \(em3 | , | 59.8, |
.04471, | 5.8\ , | \(em3.4, | \ \ 1.2
.LP
250\ DATA\ \ \ 3.2, \ \ 13 | , \ \ 13.5, \ 21.1, \ \(em5 | , | 59.4, |
.05981, | 6.35, | \(em3.1, | \ \ \ .7
.LP
260\ DATA\ \ \ \ .8, \ \ 12.9, \ \ \ 8.9, \ 17.4, \ \(em6.3, | 56.3, |
.07789, | 7.25, | \(em2.6, | \ \ \ .3
.LP
270\ DATA\ \ \ \ .3, \ \ 13.2, \ \ \ 6 | , \ \ 9.3, \ \(em8 | , | 52.4, |
.0839\ , | 7.35, | \(em2.5, | \ \ 0 |
.LP
280\ DATA\ \ \ 0 | , \ \ 12.4, \ \ \ 4.9, \ \ 2.7, \ \(em9 | , | 47.6, |
.0899\ , | 7.8\ , | \(em2.9, | \ \ 0 |
.LP
290\ DATA\ \ \(em1.8, \ \ 11.5, \ \ \ 3.6, \ \ \(em.9, \ \(em8.5, | 45.2, |
.09627, | 8.05, | \(em2.8, | \ \ 0 |
.LP
300\ DATA\ \ \ \(em.3, \ \ \ 9.7, \ \ \ 4.9, \ \(em7.1, \ \(em8 | , |
44 | , |
.10376, | 8.25, | \(em2.1, | \ \(em.1
.LP
310\ DATA\ \ \ \(em.8, \ \ \ 6.4, \ \ \ 5.5, \(em12.4, \ \(em9 | , | 41.4, |
.11097, | 8.3\ , | \(em4.6, | \ \(em.2
.LP
320\ DATA\ \ \(em9.9, \ \ \ 4.9, \ \ \(em1.7, \(em20.4, \(em11.5, | 38.8, |
.11859, | 8.18, | \(em6.2, | \ \(em.2
.LP
330\ DATA\ \(em17.1, \ \ \(em2.4, \ \(em15.4, \(em19.2, \(em13.8, | 34.7, |
.12694, | 7.95, | \ \(em.5, | \ \ 0 |
.LP
340\ DATA\(em111.4, \ \(em54.7, \ \(em24.8, \(em28.1, \(em13 | , | 31 | , |
.13607, | 7.57, | \ \ 7.9, | \ 87.5
.LP
350\ DATA\(em233.6, \(em144.8, \ \(em40.4, \(em38.4, \(em12.5, | 27.8, |
.14506, | 7.25, | \ 57.9, | 200 |
.LP
360\ DATA\(em237.2, \(em147.3, \ \(em44.5, \(em51.3, \(em11.1, | 26.1, |
.15487, | 7.2\ , | \ 62 | , | 200 |
.LP
370\ DATA\(em292.9, \(em199.8, \(em104.5, \(em66.6, \ \(em9 | , | 25.5, |
.16554, | 6.8\ , | \ 80 | , | 200 |
.LP
380\ X=OLR
.LP
390\ DEF\ FNP (Y)=10 \* | (Y/10)
.LP
400\ IN=0
.bp
.LP
410\ FOR\ J=1 TO 20
.LP
420\ READ\ FE, CN, ST, EL, BK, S, BJ, CJ, SRL, D1
.LP
425\ REM\ Calculation and composition of signal to noise and equivalent ratio
.LP
430\ PN=FNP(FE+RN\(em50\(emX+5)+FNP(CN+ICNO+60)+FNP(ST+RN\(em50\(emSTMR+15)
\ \ \ \ +FNP(EL+RN\(em50)
.LP
440\ ZN=S+.4\(hySRL\(emD1\(emX+6.4\(em4.343*LOG(PN)
.LP
450\ ZA=S+.8\(emSRL\(emD1\(emX\(emBK
.LP
460\ IF\ ZA>0 THEN PE =(1+ZA/9.5) \* | 2\(em1: GOTO 470
.LP
465\ PE=1E\(em10
.LP
470\ P=FNP (\(emZN)+1/PE
.LP
480\ Z=\(em4.343*LOG(P)
.LP
490\ GOSUB 660
.LP
500\ G=BJ*V
.LP
510\ IN=IN+G
.LP
520\ NEXT\ J
.LP
530\ PRINT\ \*QIN=\*U; IN
.LP
540\ LPRINT\ \*Q\ \ \ RN(dBA)=\*U; RN; \*QSTMR(dB)=\*U; STMR; \*QX(dB)=\*U;
X; \*QICN0(dB)=\*U;
ICN0;
\ \ \ \ \*QIN(dB)=\*U; IN
.LP
550\ GOTO\ 70
.LP
560\ RESTORE
.LP
570\ REM\ Speech power correction for sidetone and quality of conversation
.LP
580\ IF\ STMR>13 THEN 590 ELSE 610
.LP
590\ CS=0
.LP
600\ GOTO 620
.LP
610\ CS=.3*(STMR\(em13)
.LP
620\ X=X\(emCS+.4085*IN\(em9.87
.LP
630\ GOTO 390
.LP
640\ END
.LP
650\ REM\ Equivalence law and calculation of V
.LP
660\ IF\ Z<1.74 THEN 670 ELSE 690
.LP
670\ Q=Z+CJ
.LP
680\ GOTO 700
.LP
690\ Q=.494*Z+.88+CJ
.LP
700\ V=3/(.1+10 \* | (\(emQ/10))
.LP
710\ RETURN
.LP
720\ REM\ Determination of optimum OLR
.LP
730\ RNS=RN\(em115+.006*(RN\(em30) \* | 2\(emSTMR\(em7.9
.LP
740\ RNL=RN\(em121
.LP
750\ PC=10 \* | (ICN0/10)
.LP
760\ PRL=10 \* | (RNL/10)
.LP
770\ PRS=10 \* | (RNS/10)
.LP
780\ N1=4.343*LOG(PC+PRL+PRS)
.LP
790\ IF\ N1<\(em80 THEN OPT=7.2:RETURN
.LP
800\ OPT=7.2\(em(N1+80)/8
.LP
810\ RETURN
.bp
.sp 2P
.LP
\fBReferences\fR
.sp 1P
.RT
.LP
[1]
CAVANAUGH (J. | .), HATCH (R. | .) and SULLIVAN (J. | .): Models for the
subjective effects of loss, noise and talker echo on telephone connections,
\fIB.S.T.J.\fR , Vol.\ 55, No.\ 9, pp.\ 1319\(hy1371,
November,\ 1976.
.LP
[2]
SULLIVAN (J. | .): A laboratory system for measuring loudness loss
of telephone connections, \fIB.S.T.J.\fR ,\fR Vol.\ 50, No.\ 8, pp.\ 2663\(hy2739,
October\ 1971.
.LP
[3]
CCITT\ \(em\ Question 4/XII, Contribution COM XII\(hyNo.\ R12,
Study Period 1985\(hy1988, Geneva,\ 1986.
.LP
[4]
CAVANAUGH (J. | .), HATCH (R. | .) and NEIGH (J. | .): A model for
the subjective effects of listener echo on telephone
connections, \fIB.S.T.J.\fR , Vol.\ 59, No.\ 6,
pp.\ 1009\(hy1060, July\(hyAugust\ 1980.
.LP
[5]
CCITT\ \(em\ Contribution COM XII\(hyNo. 13, (Bell\(hyNorthern Research),
Study Period 1981\(hy1984, Geneva,\ 1981.
.LP
[6]
CCITT\ \(em\ Contribution COM XII\(hyNo. 14, (Bell\(hyNorthern Research),
Study Period 1981\(hy1984, Geneva,\ 1981.
.LP
[7]
DAUMER (W. | .) and CAVANAUGH (J. | .): A subjective comparison of
selected digital codecs for speech, \fIB.S.T.J.\fR ,
Vol.\ 57, No.\ 9, pp.\ 3119\(hy3165, November\ 1978.
.LP
[8]
CCITT\ \(em\ Contribution COM XII\(hyNo. 173, (American Telephone and
Telegraph Company), Study Period 1977\(hy1980, Geneva,\ 1979.
.LP
[9]
CCITT\ \(em\ Contribution COM XII\(hyNo. 94, (American Telephone and
Telegraph Company), Study Period 1981\(hy1984, Geneva,\ 1982.
.LP
[10]
CCITT\ \(em\ Contribution COM XII\(hyNo. 159, (American Telephone and
Telegraph Company), Study Period 1977\(hy1980, Geneva,\ 1979.
.LP
[11]
CCITT\ \(em\ Contribution COM XII\(hyNo. 158, (American Telephone and
Telegraph Company), Study Period 1981\(hy1984, Geneva,\ 1983.
.LP
[12]
AHERN (W. | .), DUFFY (F. | .) and MAHER (J. | .): Speech signal power
in the switched message network, \fIB.S.T.J.\fR , Vol.\ 57, No.\ 7,
pp.\ 2695\(hy2726, September\ 1978.
.LP
[13]
CUMMISKEY (P.), JAYANT (N. | .) and FLANAGAN (J. | .): Adaptive
quantization in differential PCM coding of speech, \fIB.S.T.J.\fR ,
Vol.\ 52, No.\ 7, pp.\ 1105\(hy1118, September\ 1973.
.LP
[14]
CCITT\ \(em\ Question 7/XII, Contribution COM\ XII\(hyNo.\ 1,
Study Period 1985\(hy1988, Geneva.
.LP
[15]
RICHARDS (D. | .): Calculation of opinion scores for telephone
connections, \fIProc. I.E.E.\fR , Vol.\ 121, No.\ 5, pp.\ 313\(hy323,
May\ 1974.
.LP
[16]
CCITT\ \(em\ Question 7/XII, Annex 2, Contribution COM XII\(hyNo. 1,
Study Period 1977\(hy1980, Geneva, 1977.
.LP
[17]
CCITT Contribution COM\ XII\(hyNo.\ 113, \fISome remarks on the structure
of\fR \fIa telephone connection assessment model\fR , Study Period\ 1977\(hy1980,
Geneva,
October\ 1978.
.LP
[18]
CCITT Contribution COM\ XII\(hyNo.\ 129, \fIUse of a telephone connection\fR
\fIassessment model in the study of Question\ 15/XII\fR , Study Period\
1977\(hy1980,
Geneva, February\ 1979.
.LP
[19]
WEBB (P. | .): The background and philosophy of the telephone network
assessment program (CATNAP), British Post Office Research Department
Report No.\ 752,\ 1979.
.LP
[20]
CCITT Draft Recommendation P.XXE, Question 15/XII, Annex\ 2 (II),
Contribution COM XII\(hyNo.1, Study Period 1977\(hy1980, Geneva, 1977.
.LP
[21]
\fIPrediction of transmission qualities from objective measurements\fR ,
Yellow Book, Volume\ V, Supplement No.\ 4, ITU, Geneva,\ 1981.
.LP
[22]
RICHARDS (D. | .): Telecommunication by speech: The transmission
performance of telephone networks, Chapter\ 3, \fIButterworths\fR , London,\
1973.
.LP
[23]
RICHARDS (D. | .): Telecommunication by speech: The transmission
performance of telephone networks, Chapter\ 2, \fIButterworths\fR , London,\
1973.
.LP
[24]
CCITT\ \(em\ Question 15/XII, Annex 1, \(sc\ 3, Contribution COM\ XII\(hyNo.\
1,
Study Period\ 1981\(hy1984, Geneva,\ 1981.
.LP
[25]
CCITT\ \(em\ Question 19/X11, Contribution COM\ XII\(hyNo.\ 1, Study Period
1981\(hy1984, Geneva,\ 1981.
.bp
.LP
[26]
CCITT\ \(em\ Question 15/XII, Contribution COM\ XII\(hyNo.\ 1, Study Period
1977\(hy1980, Geneva,\ 1977.
.LP
[27]
RICHARDS (D. | .): Telecommunication by speech: The transmission
performance of telephone networks, p.\ 57, \fIButterworths\fR , London,\ 1973.
.LP
[28]
RICHARDS (D. | .): Transmission performance of telephone networks
containing P.C.M. links, \fIProceedings of the I.E.E.\fR , Vol.\ 115,
No.\ 9, pp.\ 1245\(hy1258, September\ 1968.
.LP
[29]
CCITT Handbook \fITransmission planning of switched telephone network\fR
, Chapter\ II, Annex\ 3, ITU, Geneva,\ 1976.
.LP
[30]
BOERYD (A.): Subscriber reaction due to unbalanced transmission levels,
\fIThird International Symposium on Human Factors in Telephony\fR , 1966,
pp. 39\(hy43, The Hague, 1967.
.LP
[31]
LALOU (J.): a paper to be published in \fIAnnales des\fR \fIT\*'el\*'ecommunications\fR
.
.LP
[32]
CCITT\ \(em\ Question 7/XII, Contribution COM\ XII\(hyNo.\ 1,
Study Period 1985\(hy1988.
.LP
[33]
RICHARDS (D. | .): Calculation of opinion scores for telephone
connections, \fIProc. I.E.E.\fR , Vol.\ 121, No.\ 5, pp.\ 313\(hy323,
May\ 1974.
.LP
[34]
ALCAIM (A.): Essai de d\*'etermination d'un indice objectif de mesure
de la qualit\*'e des codeurs. \fICNET\fR , Report RP/LAA/TSS/208, May 1984.
.LP
[35]
RICHARDS (D. | .): private communication
.LP
[36]
OPINE (Rev. 2.0.), Electrical Communication Laboratories NTT, September 1986.
.LP
[37]
RICHARDS (D. | .), BARNES (G. | .): Pay\(hyoff between quantizing distortion
and injected circuit noise, in \fIProc. ICASSP 82\fR Vol.\ 2, pp.\ 984\(hy987,
Paris,
May 1982.
.LP
[38]
CCITT\(hyContribution COM XII\(hyR.17, Report of WP XII/3 meeting in
Budapest, May 1987 (Reply to Question\ 4/XII).
.LP
[39]
CCITT\(hyContribution COM XII\(hyNo. 174, Transmission performance objective
evaluation model for fundamental factors, (NTT), Geneva, 1983.
.LP
[40]
CCITT\(hyContribution COM XII\(hy235, Calculation method of OPINE, (NTT),
Geneva 1984.
.LP
[41]
CCITT\(hyContribution COM XII\(hy10, Objective evaluation model of telephone
transmission performance for fundamental transmission factors and quantizing
distortion, (NTT), Geneva 1985.
.LP
[42]
OSAKA (N.) and KAKEHI (K.): Objective model for evaluating telephone
transmission performance, \fIReview of ECL\fR , Vol.\ 34, No.\ 4, 1986.
.LP
[43]
NTT: OPINE (Rev. 2.0), private communication, Sept. 1986
.LP
[44]
IAI (S.) and IRII (H.): Subjective assessment of echo delay time
effect, \fIConference record of Acous. Soc. of Japan\fR , 2\(hy7\(hy8,
(1983\(hy03) (in
Japanese).
.LP
[45]
IAI (S.) \fIet al.\fR : A study on subjective assessment of telephone
speech
sidetone \fIConference record of Acous. Soc. of Japan\fR , 2\(hy2\(hy3,
(1978\(hy05) (in
Japanese).
.LP
[46]
OSAKA (N.) and KAKEHI (K.): A study on the psychological factors that
affect the opinion evaluation of telephone transmission performance., \fITrans.\fR
\fIIECE\fR , Vol.\ J69\(hyA, No.\ 5, 1986 (in Japanese).
.LP
[47]
IRII (H.): Loudness equivalent attenuation of speech in the presence
of noise, \fIConference Record of Acous. Soc. of Japan\fR , 1\(hy4\(hy6
(1975\(hy05) (in
Japanese).
.LP
[48]
ISO Recommendation R226: Normal equal loudness contours for pure tones
and normal threshold of hearing under free\(hyfield listening conditions,
Dec.\ 1961.
.LP
[49]
CAVANAUGH, (J. | .), HATCH, (R. | .) and SULLIVAN (J. | .): Models for
the subjective effects of loss, noise and talker echo on telephone connections,
\fIB.S.T.I.\fR Vol.\ 55, No.\ 9, 1976.
.LP
[50]
CCITT Recommendation \fIMeasurement of the AEN Value of a commercial\fR
\fItelephone system\fR . Yellow Book, Vol.\ V, Rec.\ P.45, ITU, Geneva, 1981.
.LP
.bp